Locating phospholamban in co-crystals with Ca(2+)-ATPase by cryoelectron microscopy.
نویسندگان
چکیده
Phospholamban (PLB) is responsible for regulating Ca(2+) transport by Ca(2+)-ATPase across the sarcoplasmic reticulum of cardiac and smooth muscle. This regulation is coupled to beta-adrenergic stimulation, and dysfunction has been associated with end-stage heart failure. PLB appears to directly bind to Ca(2+)-ATPase, thus slowing certain steps in the Ca(2+) transport cycle. We have determined 3D structures from co-crystals of PLB with Ca(2+)-ATPase by cryoelectron microscopy of tubular co-crystals at 8--10 A resolution. Specifically, we have used wild-type PLB, a monomeric PLB mutant (L37A), and a pentameric PLB mutant (N27A) for co-reconstitution and have compared resulting structures with three control structures of Ca(2+)-ATPase alone. The overall molecular shape of Ca(2+)-ATPase was indistinguishable in the various reconstructions, indicating that PLB did not have any global effects on Ca(2+)-ATPase conformation. Difference maps reveal densities which we attributed to the cytoplasmic domain of PLB, though no difference densities were seen for PLB's transmembrane helix. Based on these difference maps, we propose that a single PLB molecule interacts with two Ca(2+)-ATPase molecules. Our model suggests that PLB may resist the large domain movements associated with the catalytic cycle, thus inhibiting turnover.
منابع مشابه
Locating the thapsigargin-binding site on Ca(2+)-ATPase by cryoelectron microscopy.
Thapsigargin (TG) is a potent inhibitor of Ca(2+)-ATPase from sarcoplasmic and endoplasmic reticula. Previous enzymatic studies have concluded that Ca(2+)-ATPase is locked in a dead-end complex upon binding TG with an affinity of <1 nM and that this complex closely resembles the E(2) enzymatic state. We have studied the structural effects of TG binding by cryoelectron microscopy of tubular crys...
متن کاملInteractions between Ca-ATPase and the pentameric form of phospholamban in two-dimensional co-crystals
Phospholamban (PLB) physically interacts with Ca 2+-ATPase and regulates contractility of the heart. We have studied this interaction using electron microscopy of large two-dimensional co-crystals of Ca 2+-ATPase and the I40A mutant of PLB. Crystallization conditions were derived from those previously used for thin, helical crystals, but the addition of a 10-fold higher concentration of magnesi...
متن کاملInteractions between Ca2+-ATPase and the pentameric form of phospholamban in two-dimensional co-crystals.
Phospholamban (PLB) physically interacts with Ca(2+)-ATPase and regulates contractility of the heart. We have studied this interaction using electron microscopy of large two-dimensional co-crystals of Ca(2+)-ATPase and the I40A mutant of PLB. Crystallization conditions were derived from those previously used for thin, helical crystals, but the addition of a 10-fold higher concentration of magne...
متن کاملPhosphorylation and mutation of phospholamban alter physical interactions with the sarcoplasmic reticulum calcium pump.
Phospholamban physically interacts with the sarcoplasmic reticulum calcium pump (SERCA) and regulates contractility of the heart in response to adrenergic stimuli. We studied this interaction using electron microscopy of 2D crystals of SERCA in complex with phospholamban. In earlier studies, phospholamban oligomers were found interspersed between SERCA dimer ribbons and a 3D model was construct...
متن کاملPreparation and analysis of large, flat crystals of Ca(2+)-ATPase for electron crystallography.
Obtaining large, flat, well ordered crystals represents the key to structure determination by electron crystallography. Multilamellar crystals of Ca(2+)-ATPase are a good candidate for this methodology, and we have optimized methods of crystallization and of preparation for cryoelectron microscopy. In particular, high concentrations of glycerol were found to prevent nucleation and to reduce sta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 81 2 شماره
صفحات -
تاریخ انتشار 2001